Comparative study of statistical methods for detecting association with rare variants in exome-resequencing data
نویسندگان
چکیده
Genome-wide association studies for complex traits are based on the common disease/common variant (CDCV) and common disease/rare variant (CDRV) assumptions. Under the CDCV hypothesis, classical genome-wide association studies using single-marker tests are powerful in detecting common susceptibility variants, but under the CDRV hypothesis they are not as powerful. Several methods have been recently proposed to detect association with multiple rare variants collectively in a functional unit such as a gene. In this paper, we compare the relative performance of several of these methods on the Genetic Analysis Workshop 17 data. We evaluate these methods using the unrelated individual and family data sets. Association was tested using 200 replicates for the quantitative trait Q1. Although in these data the power to detect association is often low, our results show that collapsing methods are promising tools. However, we faced the challenge of assessing the proper type I error to validate our power comparisons. We observed that the type I error rate was not well controlled; however, we did not find a general trend specific to each method. Each method can be conservative or nonconservative depending on the studied gene. Our results also suggest that collapsing and the single-locus association approaches may not be affected to the same extent by population stratification. This deserves further investigation.
منابع مشابه
Integrating Rare-Variant Testing, Function Prediction, and Gene Network in Composite Resequencing-Based Genome-Wide Association Studies (CR-GWAS)
High-density array-based genome-wide association studies (GWAS) are complemented by exome sequencing and whole-genome resequencing-based association studies. Here we present a composite resequencing-based genome-wide association study (CR-GWAS) strategy that systematically exploits collective biological information and analytical tools for a robust analysis. We showcased the utility of this str...
متن کاملSimulation of Finnish population history, guided by empirical genetic data, to assess power of rare-variant tests in Finland.
Finnish samples have been extensively utilized in studying single-gene disorders, where the founder effect has clearly aided in discovery, and more recently in genome-wide association studies of complex traits, where the founder effect has had less obvious impacts. As the field starts to explore rare variants' contribution to polygenic traits, it is of great importance to characterize and confi...
متن کاملWhole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient
Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a gener...
متن کاملIntegrating Multiple Genomic Data to Predict Disease-Causing Nonsynonymous Single Nucleotide Variants in Exome Sequencing Studies
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and ...
متن کاملPooled association tests for rare variants in exon-resequencing studies.
Deep sequencing will soon generate comprehensive sequence information in large disease samples. Although the power to detect association with an individual rare variant is limited, pooling variants by gene or pathway into a composite test provides an alternative strategy for identifying susceptibility genes. We describe a statistical method for detecting association of multiple rare variants in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011